Through the Higgs Portal

The universe can be described by a list of particle species, and how strongly each species interacts with each of the others. For example, the electric charge of the electron, e, tells us how strongly the electron interacts with the photon. Put differently, imagining a photon flying past an electron, e tells us how often that photon will bump into the electron.

Some of the particles on this list are shy, they very rarely interact with the others. An example is the neutrino. Roughly a hundred trillion neutrinos emitted by the sun pass through your body every second. You don’t notice it because it only extremely rarely interacts with what you’re made of, i.e., the electrons, protons and neutrons that make up the atoms and molecules that make up you. It may very occasionally bump into an electron in one of your atoms, making it do a little wobble, but this happens so rarely that it has an imperceptible overall effect.

What else could be going through you right now? Maybe there are other things we haven’t discovered yet, because they’re so difficult to detect. The following is my attempt at an answer.

Continue reading “Through the Higgs Portal”


Clever Demons and Hungry Black Holes

The French scholar Pierre-Simon Laplace once told the story of a demon. The demon knows all the laws of physics, and is so smart that he can do an infinite number of calculations in his head. If you told him the exact state of the universe at one point in time, then he would be able to predict with certainty the exact state of the universe at some later time. He would always win bets.

He could also use his physics knowledge to turn the clocks back, and deduce, given the state of the universe at some time, the state it had at some earlier time. If you wanted to destroy a document containing information you’d rather no one ever find out, and, say, burned it, you still wouldn’t be safe. The demon could look at the smoke coming off the flames, and use it to deduce what was on the page.

Laplace told this story in order to convey the idea that

“We may regard the present state of the universe as the effect of its past and the cause of its future.”

This seems like a pretty sensible way to view nature to most physicists. The universe is in principle predictable. If it wasn’t the case, what’s the point in physics?

Continue reading “Clever Demons and Hungry Black Holes”

Reasons to Panic about the Hierarchy Problem

This is intended to be kind of a sequel to one of my previous posts, which attempted to convey the vibes surrounding renormalization: the systematic ignorance of physics at small scales.

If you read the thing, you may recall that I justified renormalization with the argument that physics at different scales mostly don’t effect each other. Galileo’s pendulum wasn’t effected by quantum mechanics or the gravitational pull of Jupiter.

There is an outstanding problem in particle physics at the moment that, if not resolved, may send that whole philosophy down the toilet. The problem has been around for a while, but it has got a lot worse in the last two or three years, sending particle physics into a bit of a crisis.

Continue reading “Reasons to Panic about the Hierarchy Problem”

A Little Patch of Spacetime

Recently there’s been a lot of buzz around the idea that the universe is a big simulation. The idea is pretty out there, right?

What if I was to tell you that us humans have been creating universes on computers, taking into account the most fundamental of physics, detailed to some of the smallest length scales that we understand? They’re not quite the size of our universe, or even something smaller like a planet, current computers would struggle somewhat. They’re only about 10 femtometers across, smaller than an atom. But it’s a start!

They’re called Lattice simulations, and belong to a subgenre of particle physics called Lattice Gauge Theory.

Continue reading “A Little Patch of Spacetime”

No seriously what is Entropy

 I always found the popular science description of entropy as ‘disorder’ as a bit unsatisfying.

It has a level of subjectivity that the other physical quantities don’t.  Temperature, for example, is easy- we all experience low and high temperatures, so can readily accept that there’s a number which quantifies it. It’s a similar story for things like pressure and energy. But no one ever said ‘ooh this coffee tastes very disordered.’

Continue reading “No seriously what is Entropy”

Hitchhiker’s guide to an infinity-free theory

Quantum field theory is the theoretical framework of particle physics. Without it, we never could have worked out what an atom is made of, understood the forces that govern its content, or predicted the Higgs boson.

But when it was first being established in the first half of the 20th century, it came across an apparently fatal flaw. It was plagued with infinities. And infinities don’t belong in physics. Following the rules of quantum field theory, you could end up predicting an electron having an infinite electric charge. Gasp. Its resolution lead to a revolutionised way of thinking that now underpins all of particle physics.

Continue reading “Hitchhiker’s guide to an infinity-free theory”